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PHASE 
NATURAL-CONVECTION-CONTROLLED CHANGE OF 
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SUMMARY 
The problem of phase change in the presence of natural convection has been investigated. A model has been 
proposed based on the treatment of the release/absorption of latent heat as a heat source/sink in combina- 
tion with the standard Galerkin finite element method with a primitive variable formulation on a fixed grid. 
To demonstrate the capabilities of the model, three cases of  phase change of an aluminium alloy in the 
presence of natural convection are considered, i.e. solidification, melting and combined solidification and 
melting. The solidification of water in a square cavity is modelled as another example, taking into account 
the density extremum, and the results are compared with a previously published work. 
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1. INTRODUCTION 

Many aspects of materials-processing methods, including purification of metals, growth of pure 
crystals from melts and solutions, solidification of castings, and ingots, welding, electro slag 
melting, zone melting, thermal energy storage using phase change materials, etc., involve melting 
and solidification. In all cases these phase transformation processes are accompanied by either 
absorption or release of thermal energy. A moving boundary exists that separates the two phases 
of differing thermophysical properties and at which thermal energy is absorbed or liberated. The 
heat transfer processes occurring are complex, the cooling rates employed range from lo-' to 
10" K s-' and corresponding solidification systems extend from several metres to a few micro- 
metres. These various cooling rates produce different microstructures and consequently a variety 
of thermomechanical properties. 

Numerical methods have long been employed to predict the phase change behaviour of such 
systems to enable better control over them. The early attempts were based upon the analysis of 
conduction heat transfer"' only, since this is sufficient for many cases; however, many analyses 
have appeared in the past decade taking into account natural convection effects. Convection 
cannot be neglected in many cases of practical In a finite element method context 
a significant contribution was made by Gartling,6 who made use of the Boussinesq approxima- 
tion and the enthalpy method in solving the Navier-Stokes and energy equations. Later, 
Morgan7 presented an explicit finite element algorithm for the solution of the basic equations 
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describing combined conductive and convective transfer of heat in a material undergoing 
a liquid/solid change of phase in a cylindrical thermal cavity. 

The enthalpy method suffers from a number of deficiencies as discussed in References 8 and 9. 
In this paper we have used a method" which treats the release/absorption of latent heat as 
a fictitious heat source/sink in combination with the standard Galerkin finite element method 
based on a mixed formulation with the primitive variables'' using a fixed mesh. Some examples 
of phase change in the presence of natural convection are presented after a brief review of the 
numerical method. 

2. GOVERNING DIFFERENTIAL EQUATIONS 

The basic principles of conservation may be invoked to obtain the equations that govern the 
transfer processes accompanying phase change, namely the conservation of mass, momentum 
and energy. All these quantities that must be conserved can be transported within the domain of 
interest by two modes, i.e. diffusion and convection. 

Conservution of mass 

v - v = o ,  

where v represents the velocity. 

Conservation of momentum 

Dv 
p- = v - 7 + p g ,  

Dt 

where 7 is the stress tensor, p and g are the density and gravitational acceleration respectively and 
D/Dt represents the total or substantial derivative. 

Conservution of energy 

DT 
pc ~ = V * k V T +  Q, 

Dt (3) 

where c and k are the specific heat and thermal conductivity respectively, Tis the temperature and 
Q is the rate of internal heat generation. 

In natural convection problems the effect of temperature on flow can be included in the 
equations by involving the Boussinesq approximation, in which case equation (2) is written as 

where p is the coefficient of thermal expansion and is a reference temperature. 

3. BOUNDARY CONDITIONS 

The Dirichlet or essential boundary conditions as applicable to the Navier-Stokes equations and 
energy equations are the specified velocities or temperature at the boundaries. The pressure may 
not be specified at the boundaries since it is an implicit variable in an incompressible flow l 2  which 
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'adjusts' itself to deliver a solenoidal velocity field. However, in the case of contained flow, 
i.e. specified velocities on all boundaries, it must be specified at least at one point as a datum. 

The Neumann or natural boundary conditions for the Navier-Stokes equations can be the 
normal and tangential traction forces specified as 

where n and T are the unit normal and tangent vectors respectively, P is the pressure and p is the 
dynamic viscosity. For the energy equation the general Neumann boundary condition is 

where q, h and 
the ambient temperature respectively. 

are the specified boundary heat flux, the convective heat transfer coefficient and 

4. FINITE ELEMENT FORMULATION 

The conservation equations and the boundary conditions may be discretized spatially to obtain 
the finite element equations. The conventional Galerkin weighted residual technique is the usual 
way of achieving such a discretization, which will only briefly be presented in this paper. More 
detailed theoretical treatment can be found in standard texts such as References 13 and 14. 

4.1. Spatial discretization 

The field variables involved in the governing equations, i.e. temperature (T) ,  velocities (v) and 
pressure ( P ) ,  are approximated over each element in terms of the nodal values by shape functions 
which are written as 

n n n' 

where n represents the number of velocity and temperature nodes in element e and n' the pressure 
nodes. Similarly, N represents quadratic shape functions for velocity and temperature interpola- 
tion and N ' represents linear shape functions for pressure interpolation. This is termed the mixed 
formulation. As defined in Reference 15, mixed formulations are those which result from 
approximating differential equations in which the variables can be reduced by elimination. Often 
such formulations are equivalent to applying Lagrangian constraints and result in equations of 
the form 

where x are the primary variables and y are the constraint variables. This, in spite of the 
definition, results in an increase in the number of variables, i.e. the extra constraint variables. This 
form is widely used for the incompressible flow equations and results in matrices of the form 
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where u and P are velocities and pressures respectively, with P corresponding to the Lagrangian 
multipliers. 

In such cases arbitrary combination of interpolation for pressures and velocities leads to the 
problem of mesh locking caused by overconstrainment, which results in rank deficiency in the 
coefficient matrix and a solution at best may contain spurious pressure modes or at worst be 
impossible to obtain. The elements with viable u and P interpolations are said to satisfy the 
BabuSka-Brezzi (Reference 14, p. 208) condition. Two commonly used elements that satisfy this 
condition are shown in Figure 1.  These elements are not optimal in terms of the enforcement of 
the incompressibility condition-or, in other words, are relatively underconstrained-which 
leads to poor velocity solution on coarse grids and for difficult problems.I2 Special elements with 
better constraint properties are discussed in Reference 12. Here the elements of Figure 1 have 
been chosen for the reasons of optimal convergence rate and a proven record of performance in 
problems of incompressible flow. These elements give Co-continuous velocities and Co-conti- 
nuous pressures. In coupled flow and heat transfer problems a temperature degree of freedom is 
added with Co-interpolation. 

If we approximate (l), (4) and (3) and the boundary conditions (5)-(7) using the shape functions 
in (8), the final set of spatially discretized equations in a fully coupled form can be written as 

Me+KO=F, (9) 
where 6 represents all the variables. Equation (9) may be written in an expanded matrix form as 

~ c M T  0 0 0 K T  0 0 0  T FT [ I pT 8 0 PMU 8 I(!)+[ p s m u  8 :; K u u  2 cu K u u  ..](~)=[+ FU 

where the first to the fourth rows represent the energy, x-momentum, continuity and 
y-momentum equation respectively. The matrix components are as follows. 

MT=Mu=Mu= 4 N j ;  j n  
all these matrices are n x n, with n being the number of velocity and temperature interpolation 
nodes. 

T,v,P 

0 T.v 
Nodal D.O.F's 

Figure 1. Elements used 
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all the above are n x n matrices. 

these are n x n’ matrices. 

these are n’ x n matrices. Finally, the force vectors, which are all n-vectors, are 

F u  = lr Ni f x  9 

This completes the spatial discretization by the finite element method of the original conserva- 
tion equations in a standard manner. 

4.2. Temporal discretization 

The spatial discretization discussed in the previous subsection creates a set of first-order 
ordinary differential equations with respect to time. The first-order system of equations repres- 
ented by (9) can be discretized in time by the ‘generalized midpoint or trapezoidal family of 
methods’ (Reference 16, p. 145): 

M(en + a ,  t n  + a l e ,  + a + K(en + a )  t n  + + a = F ( e n  + a , t n  + a) ,  (10) 
where n is the time step number and 

(11) 
* en+,-efl 

At ’ t ,  + a  = t, + U A t .  e,+a=(1-a)4+a4,+1,  

Substituting (1 1) into (lo), we obtain 

( M n  + a + UAt Kn + a ) e n  + 1 = C M n  + a - (1 -a)AtKn+ a 1  e n  + At F n  + a * (12) 
By changing the value of u from zero to unity, different members of this family of methods are 
identified, i.e. 

a=O, 
a=+, midpoint rule or Crank-Nicolson 
a=& Galerkin 
u= 1, 

forward difference or forward Euler 

backward difference or backward Euler. 
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All except the first (forward Euler) of the above schemes are implicit, i.e. they require matrix 
inversion for solution. 

Rigorous analysis of the stability and convergence characteristics of non-linear convec- 
tion/diffusion problems which involve non-symmetric and non-positive definite matrices is not 
a simple matter. Useful information can be found in the relevant literature such as Reference 16. 
Some results obtained from an energy method analysis (Reference 16, p. 150) suggest uncondi- 
tional stability for a>+ for the generalized midpoint family. 

5. MODELLING OF THE LATENT HEAT EFFECT 

Among the fixed mesh methods, the most commonly used methods have been ‘effective heat 
capacity’ and the ‘enthalpy method’. In the first method a temperature-dependent specific heat 
over a range of temperatures is used to account for the extra heat generatedlabsorbed due to 
phase change. This method therefore cannot accurately model an isothermal. change of phase 
owing to the requirement of a temperature range. In reality this method is of limited value incases 
other than those where the phase change occurs in a very wide range of temperatures, owing to 
limitations on temporal and spatial step sizes, problems of convergence and oscillation, etc.17 The 
enthalpy method2 enables the heat capacity to be defined as a smooth function of temperature, 

dH 
P C ’ p  

where H represents enthalpy. This is calculated using several averaging techniques. l7  The 
technique suggested in Reference 2 is simple and gives satisfactory results, i.e. 

where n represents the time step number. The enthalpy method also suffers from the limitation 
that the phase change must occur over a temperature range. 

A more suitable method is the ‘fictitious heat flow method”’ whereby all the latent heat 
available at the nodes is lumped and released as an internal heat source at the appropriate 
temperature or in a range of temperatures, which enables the modelling of isothermal phase 
changes as well as those over a range of temperatures. To implement this method in the numerical 
scheme, the Q-term (which is the rate of internal heat generation) from the energy equation (3) is 
used by specifying 

Q = p i ,  
where L is the latent heat. The total latent heat available at each node i of the finite element mesh, 
say Qtoti is calculated according to the volume associated with the node i, which can be obtained 
by constructing a lumped mass matrix.13 At a given time step Arn the Qi-term for node i in the 
force vector is calculated for each iteration p as 

where I; is the freezing temperature for an isothermal phase change; for a mushy phase change it 
can be either the liquidus temperature in the case of freezing or the solidus temperature in the case 
of melting. The above equation is only used if the temperature after any iteration enters the phase 
change range. The total latent heat accounted over the time step At, is the sum of Qf for all 
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T = -45.0 To = 0.0 Tj = -0.15 
I 

iterations times Ar,,. This enables the use of variable time steps in the analysis. The phase change 
is considered complete after all the latent heat is accounted for over one or more time steps. This 
method gives very reasonable results even for large time steps and coarse meshes. 

Figure 2 shows comparisons between the analytical solution of the enthalpy and the source 
methods for a 1D solidification problem as in Reference 10. The material properties are shown in 
the figure; and I; refer to the initial and freezing temperatures respectively. Although the 
enthalpy method appears to be relatively more accurate, the source method gave reasonable 
results in less than 5% of the time. Furthermore, a 1 “C temperature range was used for the 
enthalpy methad while for the source method the phase change was isothermal. A more accurate 
solution may be obtained using the source method if smaller time steps are used. 

pc = 1.0 

6. VELOCITY SUPPRESSION IN THE SOLIDIFIED REGION 

Since the Navier-Stokes equation is being solved for the whole domain, there needs to be 
a mechanism for suppressing the velocities in the areas which are solid. The simplest method’ is 
to assign the nodal velocity values to zero where the nodal temperature is below the freezing or 
solidus temperature ( E ) .  A more rigorous approach is used in Reference 9, which consists of 
modelling the mushy zone as a porous medium and making the porosity (c) depend on the 
amount of latent heat released/absorbed. The flow in the porous medium (mushy zone) is then 
governed by the momentum equations and a source term obtained from Darcy’s law. A less 
sophisticated and easier-to-implement approach was used in Reference 6, which involves making 
the viscosity a function of temperature, so that when the temperature goes from the liquidus ( T )  
to the solidus the viscosity increases rapidly to a ‘large’ value. This causes the velocities in the 

0 00 Anal and FEM sols of 1-D solidlf 0 20 

-0 20 0 00 

Anal ond FEM sols of 1 - D solidlf 

-0 20 
-040 
-060 
0 80 

u .- -100 

6 -120 E -120 

-1 40 -1 40 

-1 60 -1 60 

-1 80 -1 80 
-2 00 -2 00 

-0 40 

-060 

-080 
H -100 

0 

-2 20 -2 20 

005 010 015 020 025  030 035  040 0 0 5  010 015 020 025  0 3 0  0 3 5  040 
Time *lo Time *lo 

From 1500 Timesteps From 70 Timesteps 

Figure 2. Comparison of the enthalpy and source methods (temperature versus time at x =  1.0) 
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corresponding areas to be suppressed. Following the last approach, in this work the mushy zone 
viscosity pm is made a function of temperature as 

p~ =p, (,),,--) , 

where ,us is the viscosity in the solid region (fixed to a large number) and p, is the viscosity in the 
liquid region. 

7. NUMERICAL EXAMPLES 

Some examples of solidification and melting in a cavity are solved using a finite element 
programme developed according to the preceding theory. Firstly, properties roughly those of an 
aluminium alloy have been used, with the phase change assumed to happen over a 25 "C range. 
Three examples have been solved, which include solidification of the above alloy in the cavity 
with natural convection effects, followed by melting in the same cavity and finally simultaneous 
solidification and melting. 

Secondly, isothermal solidification of water in a square cavity has been analysed taking into 
account the density extremum of water at 4.0 "C. The results have been compared with those of 
Davis et d.'* 

All the examples were solved using both lumped and consistent capacitance matrices. Only the 
lumped mass results have been presented since they were smoother; there was little difference in 
the two solutions otherwise. The backward Euler method (EX= 1)  was used for time integration in 
all examples. The finite element mesh used for all problems is shown in Figure 3. 

7.1. Solidijcation example 

We begin with an example of the solidification of an aluminium alloy in a square cavity 
(5.0 cm x 5.0 cm) as shown in Figure 4. The material properties and the boundary conditions are 

No. of Nodes: 441 No. of Elements: 100 
No. of NodedElemem: 9 

Figure 3. Finite element mesh for the problems of solidification and melting of aluminium and isothermal solidification of 
water 
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Hot wall 
T = 710°C 

u = 0.0 
u = 0.0 

u = 0.0 2, = 0.0 = 0.0 

------I 
Cold wall 
T = 610°C 

u = 0.0 
1) = 0.0 

/3 = 4.0 x 10-5& 

p = 2 . 5 5  
g = 981.0Y 
c = 0.25'"' 

k = 0 . 2 5 s  

pi = 0 . 0 2 5 E  

gm0C 

, , I , , , , , , , , I I , , , , I , I ,  I ,  I I , , , , l l I I I, = 95.0$ 
(Solidus) T, = 625°C 

u = 0.0 v = 0.0 aT = 0.0 (Liquidus) T, = 650°C 
aY 

Figure 4. The problem domain with boundary conditions and material properties for aluminium alloy 

also shown in the figure. The phase change is assumed to occur over a range of 25°C. The 
material properties, boundary conditions and cavity dimensions correspond to a Rayleigh 
number (Ra) of 1.2 x lo5, a Prandtl number (PI-) of 002 and a Stefan number (Ste) of 0.22. The 
Stefan nvmber (Ste) is a measure of the amount of sensible heat compared to latent heat, i.e. 

CAT 
Ste=--, 

L 

where AT is the absolute difference between the cold wall and phase change temperatures in the 
case of solidification and between the hot wall and phase change temperatures in the case of 
melting. The lower Ste is, the more difficult the phase change problem becomes. We begin with 
liquid at a uniform initial temperature over the whole domain which is equal to the hot wall 
temperature (710 "C). The same thermal properties have been used for the liquid and solid and, to 
further simplify matters, have been assumed constant. The solid viscosity was fixed arbitrarily at  
lo5, which was sufficient to suppress flow in the solid regions. 

The results of several time steps from this analysis are shown in Figure 5 in the form of velocity 
vectors and temperature contours. The last set of results represents a steady state after which the 
solution remains essentially uniform. 

7.2. Melting example 

The same alloy as used in the previous subsection is now melted. The boundary conditions are 
kept the same as before. Here we begin with a uniform initial temperature equal to the cold wall 
temperature (610 "C), which is below the solidus temperature (625 "C), thus making the whole 
domain solid. 

The results of several time steps from this analysis are shown in Figure 6. Again the last set of 
results represents a steady state. It may be noted that the steady state result from the last example 
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Mm. value = 610.oooO Interval = 4.7619  ax. Velocity = 0.8076 
Max. value = 710.oooO Time = 0.95 Time = 0.95 

Min. value = 610.oooO Interval = 4.7619 Max. Velocity = 2.9732 
Max,value= 710.oooO Time= 12.93 Tim= 12.93 

Min. value=610.0000 Interval=4.7619 Max. velocity=3.4738 
Max. value=710.0000 Time=285.27 Time=285.27 

Min. value = 610.oooO Interval = 4.7619 
Max. value = 710.oooO Tim = 919.96 

Max. Velocity = 3.3078 
Time = 919.96 

Figure 5. Results from the solidification example 
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is quite similar to this one, which of course must be the case since the boundary conditions are the 
same. 

There is evidence of wiggles in some of the isotherm plots, mainly because of two reasons. 
Firstly, in the areas undergoing phase change the temperature correction involved in the heat 
source algorithm produces some local wiggles in the contours. Secondly, the use of lumped mass 
matrices also causes wiggles (oscillations) in transient advection problems. l9 The unphysical 
isolated peak in the solidified region of the last isotherm plot of Figure 6 is due to the first, as it lies 
within the phase change region. 

7.3. Combined solidijication and melting example 

The same alloy with the same boundary conditions is now analysed with an initial condition as 
shown in Figure 7, where the domain is partly solid and partly liquid, with the solid part at an 
initial temperature equal to the cold wall temperature (610 "C) and the liquid part at an initial 
temperature equal to the hot wall temperature (710 "C). This means that the steady state solution 
can only be reached if solidification and melting occur simultaneously. 

Figure 8 shows the results of a few time steps from this analysis. It may be noted that the 
bottom half of the liquid region freezes initially owing to the loss of heat to the solid region, but 
melts again later with the build-up of heat as the parts of the solid region begin to melt as well. 
It can again be seen that the steady state result here corresponds to the previous ones from 
Figures 5 and 6. Again the wiggles seen in the isotherm plots of Figure 8 can be explained by the 
reasoning given in the previous subsection. 

7.4. Isothermal solidijication of water accounting for  the density anomaly 

A more challenging example is now solved to assess the capabilities of the programme. This 
example involves the solidification of water in the square cavity. Phase change takes place 

u = 0.0 11 = 0.0 g = 0.0 

Hot wall 
T = 710°C 

u = 0.0 
11 = 0.0 

Liquid region 

I I I I I I , I I , I I I I I I I I , , , , l l l l  

- 
To = 610°C 

Solid region 

- 
u = 0.0 0 = 0.0 = 0.0 

Cold wall 
T = 610°C 

u = 0.0 
2) = 0.0 

Figure 7. Problem domain for the combined solidification and melting example 
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Min. value = 610.oooO Interval = 4.7619 Max. Velocity= 2.5003 
Max value = 710.oooO Time = 3.65 T i m  = 3.65 

MUI v a l u e =  610.00(10 lntrrval = 4.7619 Max Velocity= 3.4676 
M a  value= 710.oooO TITS= 78.19 l'ime= 78.19 

Min. value=610.0000 Interval=4.7619 
Max. value=710.0000 Time= 129.55 

Max. velocity = 3.1068 
Time= 129.55 

Min. value = 610.oooO Interval = 4.7619 Max Velocity = 3.1306 

Figure 8. Results from the combined solidification and melting example 
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isothermally at O"C, which poses no problem since the source method is used. This analysis is 
complicated by the anomalous behaviour of water between the temperatures of 4 and 0 "C, when 
it expands upon cooling. Therefore the density of water decreases below 4°C and reverse 
buoyancy forces are generated. In accordance with the Boussinesq approximation we deal with 
this problem by keeping the density constant and varying the thermal coefficient p. This is done 
by using the equation of state which relates density and temperature as 

P(T)=PoC1--P(T-Z)1, 

where po is the density at  which the buoyancy forces are zero, corresponding to a temperature Z. 
Differentiating this equation with respect to temperature and rearranging, we obtain 

This equation can be used with the following relation from Reference 20 to obtain fl  in terms of 
temperature: 

p( T )  = 0.999 878 383 + (5.353 697T- 0.690 752T2 + 0.003 641 T 3 )  x 

from which we can write 

*=(5.353 697- 1.381 504T+0~010923T2) x 
d T  

In addition to the buoyancy variation as described above, the temperature-dependent viscosity 
according to another relation from Reference 20 has been used, i.e. 

p(T)=prexp[6.18x lo7($-$)], 

where pr is a reference viscosity corresponding to a temperature r.  
(1 = 0.0 2, = 0.0 &?z ay - - 0.0 

Hot wall 
T = 9.ooc 

u = 0.0 
11 = 0.0 

Cold wall 
T = -5.O"C 

u = 0.0 
2, = 0.0 

Figure 9. The problem domain for isothermal freezing of water 
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Min. value = -5.ooo0 Interval = 0.6667 
MU. value = 9.ooo0 Time = 29.78 

 ax. velocity = 0.0950 
TUX= 29.78 

MW. value = -5.oooO interval = 0.6667 MU. velocity = 0.0840 
Max.value= 9.m Time= 184.19 Time= 184.19 

* . , - - -  

Min ~due = -5.oooO Intervd = 0.6667 MU. hlociry = 0.0814 
Max.value= 9.ooo0 Tim= 247 05 Tim: 247.05 

Min. value = -5.ooo0 lnterval = 0.6667 Max. Velocity = 0.0754 
Max value = 9.ooo0 Time = 654.77 T m  = 654.77 

Figure 10. Results from isothermal solidification of water 
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Figure 9 shows the problem domain, which again is a square cavity of size 3.0 cm x 3.0 cm, and 
the boundary conditions and material properties. Ra is about lo6, the Pr is about 12.0 and Ste is 
about 0 1  1. Figure 10 shows the results of a few time steps from this analysis. These results appear 
to be in agreement with the numerical results of Davis et a1.,I8 who have presented their results in 
the form of streamlines and temperature contours for three different times, which are reproduced 
in Figure 11. Davis et al. have compared their results with a flow visualization result of Weaver 
and Viskanta,21 which is shown in Figure 12. 

( 4 (b) ( c )  
Streamlines during the freezing of water: (a) t = 0 ( b )  t = 4.25min. 

( c )  t = 34 min. 

(a) (b)  ( c )  
Isotherms during the freezing of water: (a) t = 0 (b) 1 = 4.25min. (c) 

t = 34 min. 

Figure 1 1 .  Numerical results of Davis et a1." for isothermal solidification of water 

r = 0.033 

Figure 12. Flow visualization result of Weaver and Viskantazl for solidification of water 
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8. CONCLUSIONS 

It is evident from the problems solved in the previous section that a fixed-grid-based finite 
element method as presented earlier combined with the source method for latent heat 
release/absorption is capable of providing good quality analyses of a wide variety of problems of 
phase change in the presence of natural convection. 

These problems were solved using both lumped and consistent mass matrices. As reported in 
Reference 10, the lumped mass matrices gave a smoother solution. Although lumped mass 
matrices cause oscillations in the case of transient adve~t ion , ’~  it appears that their smoothing 
effect in latent heat evolution outweighs the deleterious effect in advection. The unphysical local 
peaks that appeared in the solidified regions in some of the isotherm plots are probably due to the 
mesh, which is quite coarse. Some wiggles were generated as a result of the temperature correction 
that is required in the heat-source-based latent heat algorithm at the end of each iteration. This 
effect can be reduced if a finer mesh is used in the phase change region,22 since the heat source 
method produces smoother results with finer meshes. A finer mesh than the one used here would 
also produce smoother velocity plots. 
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